ORIGINAL PAPER

The effect of Al₂O₃-coating coverage on the electrochemical properties in LiCoO₂ thin films

Yuhong Oh • Donggi Ahn • Seunghoon Nam • Byungwoo Park

Received: 5 August 2009 / Revised: 28 September 2009 / Accepted: 2 October 2009 / Published online: 23 October 2009 © Springer-Verlag 2009

Abstract The electrochemical properties of nanoscale Al₂O₃-coated LiCoO₂ thin films were examined as a function of the coating coverage. Al₂O₃-coated LiCoO₂ films showed enhanced cycle-life performance with increasing degree of coating coverage, which was attributed to the suppression of Co dissolution and F⁻ concentration in the electrolyte. Moreover, an Al₂O₃-coating layer with partial coverage clearly improved the electrochemical properties, even at 60 °C or with a water-contaminated electrolyte. Even though metal-oxide coating on LiCoO₂ has been actively investigated, the mechanisms of nanoscale coating have yet to be clearly identified. In this article, surface analysis suggested that the Al₂O₃-coating layer had transformed to an AlF₃·3H₂O layer during cycling, which inhibited the generation of HF by scavenging H₂O molecules present in the electrolyte.

Keywords Li-ion battery \cdot LiCoO₂ \cdot Al₂O₃ \cdot Nanoscale coating \cdot H₂O scavenge

Introduction

Recently, hexagonal LiCoO_2 cathode materials have been used in most commercial lithium-ion batteries on account of their simple preparation, high specific capacity, and good electrochemical properties [1]. However, Li_xCoO_2 is typi-

Yuhong Oh and Donggi Ahn contributed equally to this work.

Y. Oh \cdot D. Ahn \cdot S. Nam \cdot B. Park (\boxtimes)

Department of Materials Science and Engineering, and Research Center for Energy Conversion and Storage, Seoul National University, Seoul 151-744, Korea e-mail: byungwoo@snu.ac.kr cally charged up to ~4.2 V vs. Li (Li_{0.5}CoO₂), yielding a specific capacity below ~140 mAh/g. Further increased charge cutoff voltage results in significant deteriorations of LiCoO₂. This is attributed to structural changes in the unit-cell volume [2], increased cobalt dissolution into the organic electrolyte [3], loss of oxygen [4], formation of electrochemically resistive surface films [5], etc.

An effective method of resolving the problem of capacity fading at high cutoff voltage is thermal treatment [6, 7] or coating the surface of cathode with various materials (metal oxide, metal phosphate, or other materials) [8-22]. It was previously reported that a nanoscale metaloxide coating on the surface of cathode improved the electrochemical properties at high cutoff voltages and current rates [8-13, 17-21]. Thackeray et al. reported enhanced capacity and stability in cycling by coating ZrO₂ on LiMn₂O₄, and speculated that the enhanced performance of spinel was attributed to its ability of ZrO₂ particles to neutralize the HF component from the electrolyte [23]. Myung et al. also reported that a metal-oxide coating layer on Li1.05Ni0.4Co0.15Mn0.4O2 acted as an HF scavenger, and they suggested the following reaction: $Al_2O_3+6HF \rightarrow 2AlF_3+3H_2O$ [24, 25]. However, H_2O generated from the reaction between Al₂O₃ and HF regenerates HF in the electrolyte, and the same things happen again consequently. My group reported that metal-oxide coating on LiCoO₂ can affect lattice expansion during cycling [8, 9]. Some other researchers suggested that a partial or nonuniform coating still improved the electrochemical properties of powder materials [26, 27]. My group recently reported that Al₂O₃-coated LiCoO₂ thin film with even 50% coating coverage showed enhanced cycle-life performance with no evidence of mechanisms [28], and Al₂O₃ coating on LiCoO₂ powder was also carefully investigated by Fey et al. [29, 30]. These results were correlated with the

suppression of Co dissolution during electrochemical cycling. However, the mechanisms of metal-oxide coating have yet to be clearly identified.

Characterizing the intrinsic properties of $LiCoO_2$ powders is complicated, because the powder geometry consists of polymer binders and carbon blacks for the required electronic conduction among the ~10 µm powders. Therefore, thin-film geometry is appropriate for investigating the intrinsic properties of nanoscale coating on $LiCoO_2$, because it has only a cathode and metal-oxide electrolyte interface, and is insensitive to the coating thickness on cycle-life performance [10]. In this article, thin-film $LiCoO_2$ cathodes were examined by distinctly controlling the coating coverage, cycling temperature, and level of water contamination in order to clarify the scavenge mechanisms.

Experimental section

LiCoO₂ thin films were deposited on thermally oxidized Si (100) substrates using RF magnetron sputtering of a LiCoO₂ target. A Pt current collector was deposited onto a TiO₂ adhesion layer, and the LiCoO₂ film was deposited on the Pt layer. An approximately 600-nm-thick LiCoO₂ was deposited at a pressure of 20 mTorr with an Ar/O₂ ratio of 3/1 after presputtering for 1 h. To obtain high-quality LiCoO₂, all films were annealed at 700 °C in an oxygen atmosphere at 20 mTorr for 30 min. The 10-nm-thick Al₂O₃ thin films with a coating coverage ranging from 25% to 100% were deposited on top of the crystallized LiCoO₂ films by reactive sputtering of an Al target. The Al₂O₃coating patterns with 75%, 50%, and 25% coverage consisted of 1,000, 360, and 150 µm squares, respectively, with a distance of 150 µm between the nearest squares. After Al₂O₃ deposition, the coated and bare samples were heat-treated at 400 °C for 2 h in an oxygen atmosphere.

Beaker-type half cells were used to evaluate the electrochemical properties. The cells were made up of Li-metal sheets as a counter and reference electrode, a LiCoO₂ cathode with an active area of $\sim 1 \text{ cm}^2$ as a working electrode, and 1 M LiPF₆ in ethylene carbonate/diethyl carbonate (EC/ DEC, 1/1 vol.%, water impurities of less than 20 ppm) (Cheil Industries, Inc.) as the electrolyte. The cells were electrochemically cycled over the voltage range of 2.75 and 4.4 V by applying a current density of 0.4 mA/cm² (= 12 C) at 25 °C and 60 °C. At all the charge/discharge cutoff steps, the cell voltages were potentiostated until the current decreased to 10% of the charge/discharge rate with a time limit of 10 min. The charge-transfer resistance of cathodes with the bare and coated LiCoO₂ films was measured by electrochemical impedance spectroscopy (EIS) from 10 mHz to 100 kHz with an ac signal amplitude of 5 mV. The EIS was measured at a 4.2 V charged state with a current less than 1 μ A/cm², during the initial cycle, and after the tenth, 40th, and 80th cycles.

Inductively coupled plasma-mass spectroscopy was used to measure the extent of cobalt dissolution into the electrolyte, after floating the 4.6 V charged cathodes for 12 days at 25 °C. The fluorine-ion concentration in the electrolyte was measured by ion chromatography (IC, Dionex 500). The effects of water impurities on the electrochemical properties of LiCoO_2 were examined by cycling the cells at 25 °C with a 200 ppm watercontaminated electrolyte. The compounds on the surface of cathode materials were examined using a time-of-flight secondary-ion mass spectroscopy (ToF-SIMS, PHI7200) surface analyzer equipped with a 7.9 keV Cs ion source and pulse-electron flooding.

Results and discussion

The electrochemical performance was examined by cycling the Al_2O_3 -coated $LiCoO_2$ thin films with a surface coverage ranging from 0% to 100%. Figure 1 shows the cycle-life performance of the bare and Al_2O_3 -coated $LiCoO_2$ films, excluding the capacity at constant-voltage mode. The Al_2O_3 -coated $LiCoO_2$ films show improved capacity retention with increasing coating coverage. Nonlinearity of charge and discharge capacities above 70 cycles is attributed to the slower kinetics of Li^+ de-intercalation in

Fig. 1 a The charge- and b discharge capacity retention of bare and Al_2O_3 -coated LiCoO₂ thin films (charged to 4.4 V at 12 C) as a function of coating coverage ranging from 25% to 100%

bare $LiCoO_2$ than Li^+ intercalation, as observed by a galvanostatic intermittent titration technique, since the extra capacity from the constant-voltage mode (at 4.4 and 2.75 V) is not included [10, 15].

The voltage profiles of the bare and Al_2O_3 -coated $LiCoO_2$ thin films with various degrees of surface coverage (observed at 25 °C) are shown in Fig. 2. Compared with the profiles of the bare $LiCoO_2$, a slight increase in polarization is observed in the initial cycle of the Al_2O_3 -coated cathodes. From the second cycle, the polarization in the charge and discharge processes of the coated sample becomes less significant [10, 15].

In order to correlate the cycle-life performance of thinfilm LiCoO₂ with the electrode kinetics, EIS analysis of both the bare and Al₂O₃-coated LiCoO₂ films with different degrees of surface coverage was carried out after cycling, as shown in Fig. 3. Before the EIS measurements, all cells were cycled at 0.4 mA/cm² between 4.4 and 2.75 V, and potentiostated at 4.2 V until the current density had decreased to 1 μ A/cm². All the LiCoO₂ thin films during the first cycle show similar charge-transfer resistance (R_{ct}) , indicating that R_{ct} at the interface of the Al₂O₃-coating layer and LiCoO₂ film is comparable to that of the electrolyte and LiCoO₂ film during the initial cycle. However, R_{ct} of the bare LiCoO₂ significantly increases with increasing number of cycles compared with the coated LiCoO₂ films. These impedance spectra are consistent with the cycling performance of bare and fractional Al₂O₃-

Fig. 2 Voltage profiles of the a bare and Al_2O_3 -coated LiCoO₂ films with b 25%, c 50%, d 75%, and e 100% surface coverage

Fig. 3 EIS of the a bare and Al_2O_3 -coated LiCoO₂ films with b 25%, c 50%, d 75%, and e 100% surface coverage

coated LiCoO_2 films, because the increase in R_{ct} is closely related to a deterioration of the electrochemical properties of the cathode during cycling.

The effect of Al₂O₃-coating coverage on the HF generation was examined by measuring the F⁻ concentration in the electrolyte. The amount of F⁻ decreases with increasing Al₂O₃-coating coverage. Moreover, the Al₂O₃ coating with 100% coverage effectively inhibits F⁻ generation (~300 ppm), which is much smaller than the $F^$ concentration (~2,900 ppm) from the uncoated LiCoO₂ samples. It was reported that the decomposition of a LiPF₆based electrolyte with water leads to the formation of HF $(LiPF_6 \rightarrow LiF + PF_5 \text{ and } PF_5 + H_2O \rightarrow POF_3 + 2HF)$, which accompanies Co dissolution from LiCoO₂ [31, 32]. The amount of Co dissolution into the electrolyte from the uncoated LiCoO₂ thin film is \sim 460 ppm, while that from the Al₂O₃-coated LiCoO₂ film with 100% coverage is ~50 ppm, as shown in Fig. 4. There is a strong correlation between the amount of Co dissolution from the Al2O3coated LiCoO₂ with different degrees of surface coverage and the charge-capacity retention after 100 cycles (shown in Fig. 1a). Although it is difficult to analyze the amount of scavenged water by the Al₂O₃-coating layer, the improved

Fig. 4 The charge-capacity retention after 100 cycles from Fig. 1a, and the Co dissolution and F^- concentration in the electrolyte from bare and Al₂O₃-coated LiCoO₂ films with different coverage, after an initial 4.6 V charge and being immersed for 12 days at 25 °C

electrochemical properties even with partial coverage indicate an interaction between the coating layer and the electrolyte, which inhibits the HF generation by water scavenging.

Figure 5 shows the cycle-life performance of the bare and Al_2O_3 -coated LiCoO₂ thin films with different coverage ratios at 60 °C. The Al_2O_3 -coated LiCoO₂ films with 25% coverage show rapid capacity fading after ~70 cycles at 60 °C. However, the initial capacity and the capacity retention of the Al_2O_3 -coated LiCoO₂ at 60 °C increase with the increasing Al_2O_3 -coating coverage. The Al_2O_3 coating with a coverage ranging from 50% to 100% shows excellent cycle-life performance at the elevated temperature.

The cycle-life performances of the bare and Al_2O_3 coated $LiCoO_2$ films with 200 ppm water-contaminated electrolytes at 25 °C were examined as a function of the surface coverage, as shown in Fig. 6. The initial capacity and the capacity retention with water impurities increase with the increasing Al_2O_3 -coating coverage. The Al_2O_3 coating even with partial coverage appears to inhibit the Co dissolution from acidic HF which occurs in the electrolyte.

In order to clarify the mechanisms of how an Al_2O_3 coating effectively enhances the electrochemical properties of LiCoO₂ films under severe conditions, such as elevated temperature and additional water, the level of electrolyte decomposition was analyzed by measuring the amount of F^- in the electrolyte. As shown in Fig. 7a, the F^- concentration in the electrolyte of the Al_2O_3 -coated LiCoO₂ with full coverage samples is extremely low compared with that of the bare samples. The Al_2O_3 coating appears to suppress Co dissolution from LiCoO₂, even at an elevated temperature and additional water impurity. This is correlated with the capacity retention of LiCoO₂ as a function of the coating coverage, as shown in Fig. 7b.

To investigate the reactions between the Al₂O₃ coating and electrolyte with water contamination, the surface was examined by SIMS after 60 cycles in an electrolyte containing 200 ppm of water. In Fig. 8, the marked lines indicate the calculated ratios of mass/charge for AlOF₂⁻ (80.97 Th, Th=1 hydrogen atomic mass/electron charge), AlF₄⁻ (102.98 Th) and CoOH⁺ (75.94 Th), respectively. A fragment of CoOH⁺, which is attributed to cobalt dissolu-

Fig. 5 a The charge- and b discharge capacity retention of bare and Al₂O₃-coated LiCoO₂ films at 60 $^\circ$ C

Fig. 6 a The charge- and b discharge capacity retention of bare and Al_2O_3 -coated $LiCoO_2$ films at 25 °C with 200 ppm water-contaminated electrolyte

Fig. 7 a The F^- concentration in the electrolyte from bare and Al₂O₃coated LiCoO₂ films with 100% coverage, after an initial 4.6 V charge and being immersed for 12 days at 25 °C, 60 °C, and 25 °C with 200 ppm water, respectively. **b** The charge-capacity retention of Al₂O₃-coated LiCoO₂ films, after 100 cycles at 25 °C (Fig. 1), 60 °C (Fig. 5), and 25 °C with 200 ppm water (Fig. 6)

tion from LiCoO₂ was observed on the surface of the bare $LiCoO_2$ films. However, the amount of $CoOH^+$ on the surface decreased significantly even with a 50% Al_2O_3 coating, as shown in Fig. 8c.

Fig. 8 SIMS spectra of bare and Al_2O_3 -coated LiCoO₂ thin films, after 60 cycles with 200 ppm of water impurities in the electrolyte

Fig. 9 Schematic figure of H₂O scavenging by Al₂O₃-coating layer

Kleist et al. reported that bulk Al₂O₃ powders react with HF and H₂O in an electrolyte to form AlF₃·3H₂O complexes at room temperature after 3 days [Al₂O₃+6HF+ $3H_2O \rightarrow 2(AlF_3 \cdot 3H_2O)$], which was confirmed by the sharp X-ray diffraction peak widths [33]. Density-functional theory calculations also showed that AlF₃·3H₂O complexes were energetically favorable compared to AlF₃ and water, by ~2 eV/AlF₃ [34]. With these studies, the SIMS data of AlOF₂⁻ and AlF₄⁻ suggest that an Al₂O₃-coated layer scavenges H₂O molecules, which improves the electrochemical properties of LiCoO₂ cathodes (Fig. 9).

Conclusions

This study examined the electrochemical properties of nanoscale Al₂O₃-coated LiCoO₂ thin films as a function of the coating coverage. These results were attributed to the suppression of Co dissolution and decomposition of LiPF₆ by extensive cycling. It was found that AlF₃·3H₂O was formed from the Al₂O₃-coating layer by a reaction with HF and H₂O, thereby scavenging H₂O molecules in the electrolyte and consequently decreasing the amount of HF. The enhanced electrochemical properties with various degrees of coating coverage were correlated with the affinity of metal fluoride to scavenge H₂O impurities in the electrolyte. It still remains a question that how many H_2O molecules can be scavenged by Al_2O_3 coating, and what the effective partial-coating thickness is. In addition, direct evidence of AlF₃·3H₂O with reaction kinetics between Al₂O₃ coating layer and HF/H₂O also needs to be clarified experimentally.

Acknowledgement This work was supported by theNational Research Foundation of Korea, through the Research Center for Energy Conversion and Storage (RCECS, R11-2002-102-00000-0) and the World Class University (WCU, R31-2008-000-10075-0).

References

- 1. Tarascon JM, Armand M (2001) Nature 414:359
- Wang H, Jang Y, Huang B, Sadoway DR, Chiang Y (1999) J Electrochem Soc 146:473
- Amatucci GG, Tarascon JM, Klein LC (1996) Solid State Ionics 83:167
- 4. Venkatrman S, Manthiram A (2003) Chem Mater 15:5003
- Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen YS, Kim H, Schmidt M (2002) Electrochim Acta 47:4291
- Jiang J, Buhrmester T, Eberman KW, Krause LJ, Dahn JR (2005) J Electrochem Soc 152:A19
- 7. Li D, Ito A, Kobayakawa K, Sato Y (2007) Electrochim Acta 52:1919
- 8. Cho J, Kim YJ, Kim T, Park B (2001) Angew Chem Int Ed 40:3367
- 9. Kim YJ, Lee E, Kim H, Cho J, Cho YW, Park B, Oh SM, Yoon JK (2004) J Electrochem Soc 151:A1063
- 10. Kim YJ, Kim H, Kim B, Ahn D, Lee J, Kim T, Son D, Cho J, Kim Y, Park B (2003) Chem Mater 15:1505
- 11. Cho J, Kim T, Kim C, Lee J, Kim Y, Park B (2005) J Power Sources 146:58
- 12. Kim YJ, Cho J, Kim T, Park B (2003) J Electrochem Soc 150:A1723
- 13. Chen Z, Dahn JR (2003) Electrochem Solid-State Lett 6:A221
- Cho J, Kim Y, Kim B, Lee J, Park B (2003) Angew Chem Int Ed 42:1618
- Kim B, Kim C, Ahn D, Moon T, Ahn J, Park Y, Park B (2007) Electrochem Solid-State Lett 10:A32
- Ahn D, Kim C, Lee J, Kim B, Park Y, Park B (2007) J Mater Res 22:688
- Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Electrochim Acta 51:3872

- 18. Cho J, Kim YJ, Park B (2001) J Electrochem Soc 148:A1110
- 19. Cho J, Kim YJ, Park B (2001) Chem Mater 12:3788
- Kweon H, Park JJ, Seo JW, Kim GB, Jung BH, Lim HS (2004) J Power Sources 126:156
- Liu L, Chen L, Huang X, Yang X, Yoon W, Lee HS, McBreen J (2004) J Electrochem Soc 151:A1344
- Fey G, Yang HZ, Kumara T, Naik S, Chiang A, Lee DC, Lin JR (2004) J Power Sources 132:172
- Thackeray MM, Johnson CS, Kim J, Lauzze KC, Vaughey JT, Dietz N, Abraham D, Hackney SA, Zeltner W, Anderson MA (2003) Electrochem Comm 5:752
- Myung S, Izumi K, Komaba S, Sun Y, Yashiro H, Kumagai N (2005) Chem Mater 17:3695
- 25. Myung S, Izumi K, Komaba S, Yashiro H, Bang HJ, Sun Y, Kumagai N (2007) J Phys Chem C 111:4061
- Van Landschoot N, Kelder EM, Kooyman PJ, Kwakernaak C, Schoonman J (2004) J Power Sources 138:262
- 27. Oh S, Lee JK, Byun D, Cho WI, Cho BW (2004) J Power Sources 132:249
- Oh Y, Ahn D, Nam S, Kim C, Lee J, Park B (2008) Electron Mater Lett 4:103
- 29. Fey G, Chen J, Kumar TP (2005) J Appl Electrochem 35:177
- Fey G, Kao HM, Muralidharan P, Kumar TP, Cho YD (2006) J Power Sources 163:135
- Markovsky B, Rodkin A, Salitra G, Talyossef Y, Aurbach D, Kim H (2004) J Electrochem Soc 151:A1068
- Edström K, Gustafsson T, Thomas JO (2004) Electrochim Acta 50:397
- Kleist W, Haeßner C, Storcheva O, Köhler K (2006) Inorg Chim Acta 359:4851
- 34. Krossner M, Scholz G, Stösser R (1997) J Phys Chem A 101:1555